Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis

نویسندگان

  • Michael A. Sutton
  • Hiroshi T. Ito
  • Paola Cressy
  • Christian Kempf
  • Jessica C. Woo
  • Erin M. Schuman
چکیده

Activity deprivation in neurons induces a slow compensatory scaling up of synaptic strength, reflecting a homeostatic mechanism for stabilizing neuronal activity. Prior studies have focused on the loss of action potential (AP) driven neurotransmission in synaptic homeostasis. Here, we show that the miniature synaptic transmission that persists during AP blockade profoundly shapes the time course and mechanism of homeostatic scaling. A brief blockade of NMDA receptor (NMDAR) mediated miniature synaptic events ("minis") rapidly scales up synaptic strength, over an order of magnitude faster than with AP blockade alone. The rapid scaling induced by NMDAR mini blockade is mediated by increased synaptic expression of surface GluR1 and the transient incorporation of Ca2+-permeable AMPA receptors at synapses; both of these changes are implemented locally within dendrites and require dendritic protein synthesis. These results indicate that NMDAR signaling during miniature synaptic transmission serves to stabilize synaptic function through active suppression of dendritic protein synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic Decoding of Neural Activity: eEF2 as a Biochemical Sensor Coupling Miniature Synaptic Transmission to Local Protein Synthesis

Activity-dependent regulation of dendritic protein synthesis is critical for enduring changes in synaptic function, but how the unique features of distinct activity patterns are decoded by the dendritic translation machinery remains poorly understood. Here, we identify eukaryotic elongation factor-2 (eEF2), which catalyzes ribosomal translocation during protein synthesis, as a biochemical senso...

متن کامل

Acute suppression of spontaneous neurotransmission drives synaptic potentiation.

The impact of spontaneous neurotransmission on neuronal plasticity remains poorly understood. Here, we show that acute suppression of spontaneous NMDA receptor-mediated (NMDAR-mediated) neurotransmission potentiates synaptic responses in the CA1 regions of rat and mouse hippocampus. This potentiation requires protein synthesis, brain-derived neurotrophic factor expression, eukaryotic elongation...

متن کامل

Miniature Neurotransmission Regulates Drosophila Synaptic Structural Maturation

Miniature neurotransmission is the transsynaptic process where single synaptic vesicles spontaneously released from presynaptic neurons induce miniature postsynaptic potentials. Since their discovery over 60 years ago, miniature events have been found at every chemical synapse studied. However, the in vivo necessity for these small-amplitude events has remained enigmatic. Here, we show that min...

متن کامل

Endocannabinoid-dependent homeostatic regulation of inhibitory synapses by miniature excitatory synaptic activities.

Homeostatic regulation of synaptic strength in response to persistent changes of neuronal activity plays an important role in maintaining the overall level of circuit activity within a normal range. Absence of miniature EPSCs (mEPSCs) for a few hours is known to cause upregulation of excitatory synaptic strength, suggesting that mEPSCs contribute to the maintenance of excitatory synaptic functi...

متن کامل

Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation.

DNA methylation is an epigenetic mechanism that plays a critical role in the repression of gene expression. Here, we show that DNA methyltransferase (DNMT) inhibition in hippocampal neurons results in activity-dependent demethylation of genomic DNA and a parallel decrease in the frequency of miniature EPSCs (mEPSCs), which in turn impacts neuronal excitability and network activity. Treatment wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2006